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Abstract. We study the acoustic-phonon transmission spectra in periodic and quasiperiodic (Fibonacci
type) superlattices made up from the III-V nitride materials AlN and GaN. The phonon dynamics is
described by a coupled elastic and electromagnetic equations within the static field approximation model,
stressing the importance of the piezoelectric polarization field in a strained condition. We use a transfer-
matrix treatment to simplify the algebra, which would be otherwise quite complicated, allowing a neat
analytical expressions for the phonon transmission coefficients. Numerical results, for the normal incidence
case, show a strike self-similar pattern for both hexagonal (class 6 mm) and cubic symmetries crystalizations
of the nitrides.

PACS. 63.20.Dj Phonon states and bands, normal modes, and phonon dispersion – 63.22.+m Phonons
or vibrational states in low-dimensional structures and nanoscale materials – 77.65.-j Piezoelectricity and
electromechanical effects

1 Introduction

The study of phononic crystals, which are periodic com-
posite materials with lattice spacings comparable to the
acoustic wavelength, has received increasing attention
during the last decade driven by acoustoelectronic devices
in modern communication systems (for an up to date re-
view see [1]). They ultimately offer control of the propa-
gation of acoustic or elastic waves on a wavelength scale,
being the acoustic analogues of photonic crystals for the
case of optical and electromagnetic waves. They consist
of two- or three-dimensional periodic arrangements of two
materials with differing elastic constants that can give rise
to absolute acoustic stop bands under well-chosen geomet-
rical conditions.

These composite materials can exhibit several inter-
esting acoustic phonons physical properties, such as their
possible role in sound filters, transducer design and acous-
tic mirrors, to cite just a few [2]. Besides, layered compos-
ites may support novel types of waves, with specific fre-
quency dependence not found in homogeneous substrates,
an old subject of solid state physics [3].

It is clear, on general grounds, that in a specimen
consisting of alternate layers of thickness da of material
A and thickness db of material B, the periodicity pro-
duces a Brillouin zone boundary at reciprocal wavevector
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Q = π/(da + db). One effect of this zone boundary is that
the acoustic phonon dispersion curve becomes folded to a
zig-zag within the first Brillouin zone, yielding frequency
gaps (i.e. stop bands) in the phonon dispersion relation,
thus allowing a phonon-filtering action in the stop bands.
As typical values of the layers thicknesses are 20 nm, the
Brillouin zone edge at Q/2π = [2(da + db)]−1 occurs at
around 105 cm−1, meaning that a significant fraction of
the Brillouin zone is accessible to inelastic light scattering
techniques. Indeed, it was recently proposed hypersonic
phononic crystals to control the emission and propagation
of high frequency phonons by using interference lithog-
raphy, whose direct measurement of their phononic band
structure is possible via Brillouin light scattering [4].

Phononic devices based on piezoelectric materials
are attractive since they are extensively used as radio-
frequency filters in wireless telecommunication systems:
the integration of a phononic band gap structure to such
devices would enhance their characteristics and widen
their application range. From a fundamental point of
view, piezoelectric phononic crystals enable experiments
in which the sources and detectors of acoustic waves can be
embedded with the phononic crystal itself [5]. The strong
anisotropy of acoustic wave propagation inherent to piezo-
electric materials, combined with the mixing of shear and
longitudinal polarizations, strongly affect wave scattering,
opening up further prospects for designing a generation of
phononic-crystal-based acoustic signal processing devices.
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On the other hand, quasiperiodic crystals are a unique
type of structures which lack long-range translational
symmetry but possess a certain orientation order. An ap-
pealing motivation for studying such structures is that
their structural order lie at the boundary between the
translational invariant crystals and the random glass ma-
terials. Besides, they exhibit a highly fragmented energy
spectrum displaying a self-similar pattern. Indeed, from
a strictly mathematical perspective, it has been proven
that their spectra are Cantor sets in the thermodynamic
limit (for an up to date review see [6]). Recently, polari-
tonic states in piezoelectric Fibonacci and Thue-Morse
quasiperiodic structures were investigated, considering the
dynamics of the electromagnetic and the acoustic waves
treated on equal footing [7].

It is our aim in this work to investigate the acoustic-
phonon transmission spectra in multilayer structures com-
posed of III-V nitride semiconductors AlN/GaN, layers
arranged in a periodic and quasiperiodic Fibonacci type
fashion. The III-V nitride materials, such as GaN and
AlN, display important piezoelectric polarization fields
in a strained condition and is of obvious importance for
the study of nitride-based piezodevices and multilayer
structures [8]. In particular, knowledge of these proper-
ties allows an insightful treatment of the polarization and
ensuing electric fields in strained and polarized nitride
junctions and superlattices under any strain condition.
They can crystallize in both hexagonal wurtzite or cu-
bic zinc-blend structures [9]. The wurtzite crystals have
a different unit cell structure (four atoms per unit cell
with nine optical and three acoustic phonons for a given
wavevector), as well as a lower symmetry when compared
to the cubic zinc-blende counterpart, leading to a different
carrier-phonon interaction.

Although significant advances in growth, doping,
and device application of group III-V nitride materials
have been achieved with their stable wurtzite hexago-
nal phase [10], less progress has been made with their
metastable zinc-blend cubic structure. However, devices
with a zinc-blend structure would have considerable ad-
vantages. This is particularly true for GaN due to its
higher saturated electron drift velocity, easy cleavage, and
lower band energy [11,12]. Also cubic nitrides are expected
to have higher mobility, due to the decrease of the phonon
number for the higher symmetry structure. Therefore, in-
formation on the vibrational properties of both structures
(hexagonal and cubic) are strongly desirable.

The hexagonal wurtzite structures are uniaxial crys-
tals with the optical axis coinciding with the Cartesian
z-axis, which is perpendicular to the hexagons (forming
the xy-plane). It is the structure with highest symmetry
compatible and its polarization, as its cubic counterpart,
has a strain-induced piezoelectric field δ �P , given by [13]

δPi = eijksjk, (1)

which should be considered besides the spontaneous po-
larization in the equilibrium structure. Here repeated sub-
script are summed over, and ijk can be any Cartesian x, y,
or z axis. Also, eijk is the third rank piezoelectric tensor,

and skl, the strain tensor, is defined by:

sjk = (1/2)
(

∂uj

∂rk
+

∂uk

∂rj

)
, (2)

uk being the displacement along the coordinate axes rk.
The presence of this piezoelectric polarization compo-

nent prevents us to use the much simpler continuum equa-
tion

ρ∂2ui/∂t2 = ∂Sij/∂rj (3)

to describe the acoustic phonon dynamics (see next sec-
tion). In equation (3), ρ is the density of the material
(GaN and AlN), and Sij is the stress tensor, given by
Sij = Cijklskl, where Cijkl is the 4th-order elastic tensor.
We consider also a transfer-matrix treatment to simplify
the algebra, which would be otherwise quite complicated,
that allows one to obtain a neat analytical expressions for
the phonon transmission coefficients. Previous works in
this subject have considered the elastic band structure [14]
and the electromechanical coupling coefficient of a surface
acoustic wave [15] in a two-dimensional phononic crys-
tal containing piezoelectric material. The Lyapunov ex-
ponents in ordered and disordered piezoelectric phononic
crystals [16] as well as their acoustic phonon’s localiza-
tion, scale law and the parametric spectrum of singulari-
ties f(α), were recently presented and discussed [17].

The plan of this work is as follows: we start in Section 2
with our theoretical model along with some physical pa-
rameters definitions. The transfer-matrix approach used
as a mathematical tool to determine the acoustic-phonon
spectra is presented in Section 3. Further, in Section 4, the
phonon transmission spectra is shown, with their main
features discussed, with special emphasis in the striking
self-similar pattern for normal incidence. Section 5 deals
with some concluding remarks.

2 Acoustic phonon dynamics

We now present our general theory to study the vibration
modes in piezoelectric materials. The piezoelectric term
responsible for the coupled elastic and electromagnetic
fields is usually weak enough to allow the hybrid wave so-
lution to behave like a quasielastic mode, with a phase ve-
locity slightly lower than the uncoupled elastic mode, and
a quasielectromagnetic mode, with a phase velocity shifted
to a slightly higher value than the electromagnetic wave.
As the electromagnetic wave has a velocity approximately
five orders of magnitude higher than the elastic wave, we
can describe the former in the static field approximation
in which the particle displacement uj (j = x, y, z) along
the coordinate axes rj is coupled, through the piezoelectric
tensor eijk, to the electrical potential φ by the following
set of equations [18]:

ρ
∂2uj

∂t2
− Cijkl

∂2uk

∂ri∂rl
− ekij

∂2φ

∂ri∂rk
= 0, (4)

eikl
∂2uk

∂ri∂rl
− εik

∂2φ

∂ri∂rk
= 0, (5)
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where i, j, k and l can be x, y, or z with repeated sub-
script summed over. Also, εik is the second rank dielectric
permittivity tensor defined by:

ε(ω) =

⎛
⎝ εxx(ω) 0 0

0 εxx(ω) 0
0 0 εzz(ω)

⎞
⎠ . (6)

Here εxx and εzz are the dielectric functions perpendicular
and parallel to the z-axis, respectively. They are given by
(neglecting any damping effect):

εxx = ε∞
ω2 − ω2

LO,E1

ω2 − ω2
TO,E1

, (7)

εzz = ε∞
ω2 − ω2

LO,A1

ω2 − ω2
TO,A1

, (8)

where ε∞ is the high-frequency dielectric constant, and
ωTO,X (ωLO,X) is the transverse optical (longitudinal op-
tical) phonon angular frequency for the mode X , for each
crystalline structure (cubic and hexagonal). Here X means
either the irreducible representation of A1(z) (z-axis) or
E1(xy) (xy-plane) at the Γ point.

Assuming that the hybrid wave is propagating in the x-
direction with a phase velocity equal to ω/qx, the solutions
of equations (4) and (5) can be cast into the forms:

uj = αj exp (ikz) exp (iqxx − iωt), j = x, y, z, (9)
φ = α4 exp (ikz) exp (iqxx − iωt), (10)

where the α′s coefficients are the amplitudes of the dif-
ferent components. Substitution of the solutions of equa-
tions (9) and (10) into the coupled equations (4) and (5)
yields coupled differential equations for the pairs (ux, uz)
and (uy, φ) for both symmetries (hexagonal and cubic),
where in the latter the coupling is due to the piezoelectric
tensor. For the wurtzite (hexagonal) structure, taking into
account the appropriate form of the elastic and piezoelec-
tric tensor [19], and considering only the piezoelectric case
of interest to us, i.e. the pair (uy, φ), these equations are
reduced to:

− ρω2uy − C44

(
∂2uy

∂z2
+

∂2uy

∂x2

)
− ex5

(
∂2φ

∂z2
+

∂2φ

∂x2

)
= 0,

(11)

ex5

(
∂2uy

∂z2
+

∂2uy

∂x2

)
− εxx

∂2φ

∂x2
+ εzz

∂2φ

∂z2
= 0, (12)

where C44 and ex5 are the components of the elastic and
piezoelectric tensors, respectively (from now on we will
use the short notation CIJ and eiJ for simplicity). Solving
these coupled equations we obtain (omitting the common
exp(iqxx) factor):

uy = B1 exp(ik1z) + B2 exp(−ik1z)

− (ex5/C44)L(k2)
[
B3 exp(ik2z) + B4 exp(−ik2z)

]
,

(13)

φ = (ex5/εzz)L(k1)
[
B1 exp(ik1z) + B2 exp(−ik1z)

]
+ B3 exp(ik2z) + B4 exp(−ik2z). (14)

Here Br (r = 1, 2, 3, 4) are unknowns coefficients to be
determined through the boundary conditions, and k1,2 =
(k±)1/2, where

k2
± =

(q2
Tz − k2

x − 2q2
xp ± ∆)

2(1 + p)
. (15)

Also,

∆ =
[
(q2

Tz + k2
x)2 + 4p(q2

Tz + q2
x)(k2

x − q2
x)

]1/2

, (16)

q2
Tz = (ω/vT )2 − q2

x, (17)

k2
x = (εxx/εzz)q2

x, (18)

L(k1) = (k2
1 + q2

x)/(k2
1 + k2

x), (19)

L(k2) = (k2
2 + q2

x)/(k2
2 − q2

Tz). (20)

In the above equations, p = (e2
x5/εzzC44), qTz (qx) is

the z- (x-) component of the transverse wavevector of
the elastic wave, whose transverse velocity vT is given
by vT = (C44/ρ)1/2. Observe that when the piezoelectric
coupling is zero (p = 0), equation (15) yields the limits
k2
+ = q2

Tz and k2
− = −k2

x , as it should be.
On the other hand, for the zinc-blend (cubic) symme-

try one finds:

−ρω2uy − C44

(
∂2uy

∂z2
+

∂2uy

∂x2

)
− 2ex4

∂2φ

∂x∂z
= 0, (21)

2ex4
∂2uy

∂x∂z
− εxx

∂2φ

∂x2
+ εzz

∂2φ

∂z2
= 0, (22)

whose solutions are:

uy = L(k′
1)

[
B′

1 exp (ik′
1z) − B′

2 exp (−ik′
1z)

]

+ (εxx/ex4)L(k′
2)

[
B′

3 exp (ik′
2z) − B′

4 exp (−ik′
2z)

]
,

(23)

φ = (ex4/εxx)
[
B′

1 exp (ik′
1z) + B′

2 exp (−ik′
1z)

]
+ B′

3 exp (ik′
2z) + B′

4 exp (−ik′
2z). (24)

Here k′
1,2 = (k′±)1/2, with k′± given by

k′
± = [(q2

Tz − k2
x − 4q2

xp′) ± ∆′]/2. (25)

Also,

∆′ =
[
(q2

Tz + k2
x)2 + 8q2

xp′(k2
x + 2q2

xp′ − q2
Tz)

]1/2

,

(26)

L(k′) =
[
k′3 + k′q2

x[(εxx/εzz) + 4p′]
]/

2qxq2
Tz , (27)

and p′ = e2
x4/εzzC44.

In the next section we will use the expressions found for
the elastic displacement uy and the electrical potential φ
to determine the phonons’s transmission coefficients using
a suitable transfer-matrix approach.
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Fig. 1. The schematic representation showing the geometry of
the quasiperiodic multilayer system considered in this work, as
a sequence of alternating stacking of AlN and GaN constituents
layers following a Fibonacci arrangement.

3 Transfer matrix approach

Now we turn to the simplest case considered here, namely
the periodic binary superlattice composed of zinc-blende
(cubic) and wurtzite (hexagonal) GaN/AlN layers, form-
ing a binary superlattice structure, namely, · · ·/ AlN/GaN
/ · · · /substrate, where the substrate is here considered
to be a transparent dielectric medium like vacuum (see
Fig. 1). The more complex quasiperiodic Fibonacci struc-
ture will be considered later, as a generalization of the sit-
uation treated here. We will consider first both nitride lay-
ers with a hexagonal wurtzite crystalline structure, whose
unit cell has thickness LPS = da +db, where da (db) is the
thickness of the AlN (GaN) layer.

For the superlattice bulk modes, the coupled field
equations, defined by equations (11) and (12), together
with the elastic and electromagnetic boundary conditions
at the nth unit cell, i.e., the interfaces z = nLPS + da

(AlN/GaN) and z = (n + 1)LPS (GaN /AlN), yield:
(a) by imposing continuity of the transverse displace-

ment uy:

An
1fa1 + An

2 f̄a1 − λ1aL(k2a)An
3fa2 − λ1aL(k2a)An

4 f̄a2 =

Bn
1 + Bn

2 − λ1bL(k2b)Bn
3 − λ1bL(k2b)Bn

4 ,
(28)

An+1
1 + An+1

2 − λ1aL(k2a)An+1
3 − λ1aL(k2a)An+1

4 =

Bn
1 fb1 + Bn

2 f̄b1 − λ1bL(k2b)Bn
3 fb2 − λ1bL(k2b)Bn

4 f̄b2.
(29)

(b) by imposing continuity of the electrical potential φ:

λ2aL(k1a)An
1 fa1 + λ2aL(k1a)An

2 f̄a1 + An
3 fa2 + An

4 f̄a2 =

λ2bL(k1b)Bn
1 + λ2bL(k1b)Bn

2 + Bn
3 + Bn

4 ,
(30)

λ2aL(k1a)An+1
1 + λ2aL(k1a)An+1

2 + An+1
3 + An+1

4 =

λ2bL(k1b)Bn
1 fb1 + λ2bL(k1b)Bn

2 f̄b1 + Bn
3 fb2 + Bn

4 f̄b2.
(31)

(c) by imposing continuity of the transverse stress tensor
S32:

µk1a[1 + paL(k1a)]
[
An

1fa1 − An
2 f̄a1

]
+ µλ1ak2a[1−

L(k2a)]
[
An

3 fa2 − An
4 f̄a2

]
= k1b[1 + pbL(k1b)]

[
Bn

1

− Bn
2

]
+ λ1bk2b[1 − L(k2b)]

[
Bn

3 − Bn
4

]
, (32)

µk1a[[1 + paL(k1a)]
[
An+1

1 − An+1
2

]
+ µλ1ak2a[1−

L(k2a)]
[
An+1

3 −An+1
4

]
= k1b[1+pbL(k1b)]

[
Bn

1 fb1−Bn
2 f̄b1

]

+ λ1bk2b[1 − L(k2b)]
[
Bn

3 fb2 − Bn
4 f̄b2

]
. (33)

(d) by imposing continuity of the normal component of
the electrical displacement Dz:

λ2a(k1a/k2b)[L(k1a) − 1]
[
An

1 fa1 − An
2 f̄a1

]

+ (k2a/k2b)[paL(k2a) + 1]
[
An

3fa2 − An
4 f̄a2

]
=

λ2b(εzzb/εzza)(k1b/k2b)[L(k1b) − 1]
[
Bn

1 − Bn
2

]

+ (εzzb/εzza)[pbL(k2b) + 1]
[
Bn

3 − Bn
4

]
, (34)

λ2a(k1a/k2b)[L(k1a) − 1]
[
An+1

1 − An+1
2

]

+ (k2a/k2b)[paL(k2a) + 1]
[
An+1

3 − An+1
4

]
=

λ2b(εzzb/εzza)(k1b/k2b)[L(k1b) − 1]
[
Bn

1 fb1 − Bn
2 f̄b1

]

+ (εzzb/εzza)[pbL(k2b) + 1]
[
Bn

3 fb2 − Bn
4 f̄b2

]
. (35)

In the above equations we have used the following defini-
tions (m = a, b; j = 1, 2):

fmj = exp (ikjmdm) = 1/f̄mj, (36)

λ1m = ex4m/C44m; λ2m = ex5m/εzzm, (37)

µ = C44a/C44b. (38)

Defining the kets formed by the unknowns coefficients

|A(n)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

A
(n)
1

A
(n)
2

A
(n)
3

A
(n)
4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (39)

with similar expression for |B(n)〉, equations (28) to (35)
can be expressed as the matrices equations:

M1|A(n)〉 = N1|B(n)〉, (40)

M2|A(n+1)〉 = N2|B(n)〉, (41)
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M1 =

⎛
⎜⎜⎝

fa1 f̄a1 −λ1aL(k2a)fa2 −λ1aL(k2a)f̄a2

µk1a[1 + paL(k1a)]fa1 −µk1a[1 + paL(k1a)]f̄a1 µλ1ak2a[1 − L(k2a)]fa2 −µλ1ak2a[1 − L(k2a)]f̄a2

λ2aL(k1a)fa1 λ2aL(k1a)f̄a1 fa2 f̄a2

λ2a
k1a
k2b

[L(k1a) − 1]fa1 −λ2a
k1a
k2b

[L(k1a) − 1]f̄a1
k2a
k2b

[1 + paL(k2a)]fa2 − k2a
k2b

[1 + paL(k2a)]f̄a2

⎞
⎟⎟⎠ , (42)

N1 =

⎛
⎜⎜⎝

1 1 −λ1bL(k2b) −λ1bL(k2b)
k1b[1 + pbL(k1b)] −k1b[1 + pbL(k1b)] λ1bk2b[1 − L(k2b)] −λ1bk2b[1 − L(k2b)]

λ2bL(k1b) λ2bL(k1b) 1 1

λ2b
εzzb
εzza

k1b
k2b

[L(k1b) − 1] −λ2b
εzzb
εzza

k1b
k2b

[L(k1b) − 1] εzzb
εzza

[1 + paL(k2b)] − εzzb
εzza

[1 + pbL(k2b)]

⎞
⎟⎟⎠ . (43)

M ′
1 =

⎛
⎜⎜⎜⎝

L(k′
1a)f ′

a1 −L(k′
1a)f̄ ′

a1
L(k′

2a)

λ′
2a

f ′
a2 −L(k′

2a)

λ′
2a

f̄ ′
a2

µ[L(k′
1a)k′

1a + qxp′
a]f ′

a1 µ[L(k′
1a)k′

1a + qxp′
a]f̄ ′

a1 µ[
k′
2a

λ′
2a

L(k′
1a) + qxp′

a]f ′
a2 µ[

k′
2a

λ′
2a

L(k′
1a) + qxp′

a]f̄ ′
a2

λ′
2af ′

a1 λ′
2af̄ ′

a1 f ′
a2 f̄ ′

a2

λ′
2ak′

1af ′
a1 −λ′

2ak′
1af̄ ′

a1 k′
2af ′

a2 −k′
2af̄ ′

a2

⎞
⎟⎟⎟⎠ , (44)

N ′
1 =

⎛
⎜⎜⎜⎜⎝

L(k′
1b) −L(k′

1b)
L(k′

2b)

λ′
2b

−L(k′
2b)

λ′
2b

L(k′
1b)k

′
1b + qxp′

b L(k′
1b)k

′
1b + qxp′

b
k′
2b

λ′
2b

L(k′
1b) + qxp′

b
k′
2b

λ′
2b

L(k′
1b) + qxp′

b

λ′
2b λ′

2b 1 1
εzzb
εzza

λ′
2bk

′
1b − εzzb

εzza
λ′

2bk
′
1b

εzzb
εzza

k′
2b − εzzb

εzza
k′
2b

⎞
⎟⎟⎟⎟⎠ . (45)

where

see equation (42) above

and

see equation (43) above

The matrix M2 is obtained from M1 by dividing the first
row by fa1, the second by f̄a1, the third by fa2, and the
fourth by f̄a2. Similarly, we can obtain the matrix N2 from
N1 by multiplying the first row by fb1, the second by f̄b1,
the third by fb2, and the fourth by f̄b2.

In a similar way we can carry out the case cubic zinc-
blend crystalline structure. The results are similar to those
found for the cubic case, with M ′

1 given by

see equation (44) above

and

see equation (45) above

Furthermore, the matrix M ′
2 can be found in the same

way as discussed in the cubic case. The matrix N ′
2 can

be obtained from the matrix N ′
1 by multiplying the first

row by f ′
b1 , the second by f̄ ′

b1, the third by f ′
b2, and the

fourth by f̄ ′
b2. Besides, p′m (m = 1, 2) is defined as for pm,

provided we replace ex5m by ex4m.
It is easy to show that, using equations (40) and (41)

one can find:
|A(n+1)〉 = T |A(n)〉, (46)

where in the last step Blochs ansatz was used. Here T , the
so-called transfer matrix, is given by:

T = M−1
2 N2N

−1
1 M1. (47)

We now turn our attention to the quasiperiodic structures.
In order to construct them, we define briefly here the rules
of the unit cell growth, that consists of a sequence of build-
ing blocks (or layers), where the arrangement of the layers
follows the desired sequence. For the well-known Fibonacci

(FB) sequence, the rule is Sn = Sn−1Sn−2, n > 2, where
S1 = A, S2 = AB. The FB rule is invariant under the
transformation A → AB and B → A. Here A means
the AlN layer, while B represents the GaN one. These
inflation rules can also be understood as an invariance
condition, because they leave their respective sequences
invariant when applied. The Fibonacci generations are:

S0 = [B]; S1 = [A]; S2 = [AB]; S3 = [ABA]; etc. (48)

The number of the bulding blocks increases according to
the Fibonacci number, Fl = Fl−1 + Fl−2 (with F0 =
F1 = 1), and the ratio between the number of the build-
ing blocks A and the number of the building blocks B
in the sequence is equal to the golden mean number
τ = (1/2)(1 +

√
5).

To determine the phonon transmission curves for the
quasiperiodic FB structure we can use the appropriated
transfer matrices, which for the wurtzite hexagonal struc-
ture for any higher generation (n ≥ 1) is given by
TSn+2 = TSnTSn+1, with a similar expression for the cu-
bic zinc-blend structure (provided we replace all hexag-
onal M ’s and N ’s matrices by their cubic counterparts).
Therefore, from the knowledge of the transfer matrices
TS0 = N−1

2 M2, TS1 = N−1
1 M1, and TS2 = N−1

1 M2N
−1
2 M1

(periodic case), we can determine the transfer matrix of
any FB generation.

4 Phonon transmission spectra

As explained in the previous section, for piezoelectric ma-
terials with hexagonal (class 6 mm) and cubic symmetries,
equations (9) and (10) yield coupled differential equations
for the pairs (ux, uz) (shear vertical waves) and (uy, φ)
(shear horizontal waves), respectively, where in the latter
the coupling is due to the piezoelectric tensor. Under these
circumstances, in order to obtain the transmission spectra
we must relate the amplitudes of the elastic field in the
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transparent medium (vacuum) C at z < 0 to those in the
region z > LQPS , LQPS being the size of the quasiperi-
odic structure, by successive applications of equation (46)
which relates the amplitudes An+1

i of the elastic field in
layer (n + 1) with those An

i associated to the layer n.
To do that, let us consider the transmission geome-

try depicted in Figure 1, where the phonon wavevector �k
makes an incident angle θ to the growth direction of the
quasiperiodic structure (z-axis).

Re-arranging equation (46) to take into account the
boundary conditions at the interfaces z < 0 and z > LQPS

[20], we obtain:
⎛
⎜⎝

An
1

An
2

An
3

An+1
4

⎞
⎟⎠ = D−1D′

⎛
⎜⎜⎝

An+1
1

An+1
2

An+1
3
An

4

⎞
⎟⎟⎠ , (49)

where

D =

⎛
⎜⎝

T11 T12 T13 0
T21 T22 T23 0
T31 T32 T33 0
T41 T42 T43 −1

⎞
⎟⎠ , (50)

and

D′ =

⎛
⎜⎝

1 0 0 −T14

0 1 0 −T24

0 0 1 −T34

0 0 0 −T44

⎞
⎟⎠ . (51)

Once equation (49) is solved, the transmittance can be
obtained by:

T =
| An+1

1 |2
| An

1 |2 . (52)

Now we present numerical simulations for the acoustic
phonon transmission through the quasiperiodic AlN/GaN
piezoelectric multilayered structure. The physical param-
eters used here are:

(i) for AlN [21]: ωLO,E1 = 113.02, ωTO,E1 = 83.13,
ε∞ = 4.68, ρ = 3.32, C44 = 2.00, ex4 = 1.46 and
ex5 = 0.60;

(ii) for GaN [22]: ωLO,E1 = 94.06, ωTO,E1 = 73.22,
ε∞ = 5.29, ρ = 6.25, C44 = 1.54, ex4 = 0.73 and
ex5 = 0.49.

Here, the frequencies are in units of meV, the elastic terms
in units of 1011 N/m2, the piezoelectric terms in units
of C/m2, and the densities in units of 103 kg/m3. We
have considered the thickness of the AlN layer da equal to
10 nm, and the ratio da/db = 0.5. For numerical results,
instead of to use the frequency ω, we prefer to replace it
by the reduced frequency ω/Ω, with Ω = vT /da.

The normal incidence (θ = 0) acoustic phonon trans-
mission spectrum for the tenth-generation (89 layers)
quasiperiodic Fibonacci sequence, as a function of the re-
duced dimensionless frequency ω/Ω, is shown in Figure 2a,
for the hexagonal symmetry. The transmission spectrum
presents a filtering action on phonons around the reduced
frequency ω/Ω = 2.375, corresponding to a forbidden gap
(stop band). Besides, the structure is phonon transpar-
ent (the transmission coefficient is closely equal to 1.0)

Fig. 2. Normal-incidence acoustic phonon transmission spec-
tra for the quasiperiodic Fibonacci multilayered phononic
structure in the hexagonal symmetry: (a) the transmittance
T as a function of the reduced frequency ω/Ω, with Ω =
vT /da, for the tenth generation of the Fibonacci sequence;
(b) same as in (a), but for the reduced range of frequency
1.38 < ω/Ω < 2.48; (c) same as in (b), but for the fifteenth
generation of the Fibonacci sequence, at the range of frequency
2.852 < ω/Ω < 2.946.
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at several reduced frequencies. The condition of trans-
parentness implies that the layers A (AlN) and B (GaN)
are equivalent from a wave point of view. Furthermore,
the transmission spectrum has a striking scaling property
with respect to the generation number of the Fibonacci
sequence. To understand this scaling property, consider
Figure 2b, which shows the optical transmission spectrum
of Figure 2a for the range 1.38 < ω/Ω < 2.48. This spec-
trum is the same, as shown in Figure 2c, to the one repre-
senting the fifteenth-generation (987 layers) quasiperiodic
Fibonacci sequence (i.e. it has been recovered after five
Fibonacci generation), for the range of frequency reduced
by a scale factor f approximately equal to 10 (2.852 <
ω/Ω < 2.946). So, f gives the scale change of the acous-
tic wavevector between spectra T [Sj] and T [Sj+5], Sj be-
ing the jth generation of the Fibonacci sequence. Indeed,
at the twentieth-generation, which means 10,946 layers
(not shown here), this striking self-similar pattern appears
again for the range of frequency (2.979 < ω/Ω < 2.988),
which is reduced by a scale factor equal to f2 (approxi-
mately 100). Therefore, quasilocalization of the acoustic
waves in a Fibonacci phononic multilayer is demonstrated
by the self-similarity of the transmission coefficients under
the given boundary conditions.

Analogously, the normal incidence acoustic phonon
transmission spectrum for the tenth-generation Fibonacci
sequence, as a function of the reduced dimensionless fre-
quency ω/Ω, is shown in Figure 3a, for the cubic sym-
metry. The filtering action on the acoustic phonons ap-
pears now in a two much broad range of frequency, the
first one at 1.249 < ω/Ω < 1.40, with the other at
2.585 < ω/Ω < 2.710, defining two stop bands. As in the
hexagonal symmetry case, the transmission spectrum is
phonon transparent at several reduced frequencies, with
the same striking scaling property with respect to the
generation number of the Fibonacci sequence, as it can
be seen in Figure 3b, which shows the optical transmis-
sion spectrum of Figure 3a for the range of frequency
1.10 < ω/Ω < 1.46. As it is depicted in Figure 3c, this
spectrum is recovered again after five Fibonacci genera-
tion, i.e. at the fifteenth-generation, for the range of fre-
quency reduced by a scale factor approximately equal to
10 (1.622 < ω/Ω < 1.660), and again at the twentieth-
generation (not shown here), at the frequency range de-
fined by (0.9137 < ω/Ω < 0.9164).

For the oblique case, Figure 4 shows quite a differ-
ent scenery for the hexagonal symmetry. The transmis-
sion spectrum shows now a sharp stop band for the in-
cident angle θ = 10◦ (full line) at ω/Ω = 1.652. This
sharp forbidden band develops into a broad band, as
the angle of incidence increases, reaching the frequency
range 1.5 < ω/Ω < 1.65 for the incident angle θ = 45◦
(dashed line). Observe a new sharp forbidden band at the
low-frequency region, at ω/Ω = 0.409. Quite interesting,
there is no more self-similar structure, indicating that the
phonon transmission is very sensitive to the angle of in-
cidence. On the other hand, for the cubic symmetry, the
transmission spectra shows, as in the normal incidence
case, two stop bands at different frequencies range, for dif-

Fig. 3. Normal-incidence acoustic phonon transmission spec-
tra for the quasiperiodic Fibonacci multilayered phononic
structure in a cubic symmetry: (a) the transmittance T as a
function of the reduced frequency ω/Ω, with Ω = vT /da, for
the tenth generation of the Fibonacci sequence; (b) same as in
(a), but for the reduced range of frequency 1.10 < ω/Ω < 1.46;
(c) same as in (b), but for the fifteenth generation of the Fi-
bonacci sequence, at the range of frequency 1.622 < ω/Ω <
1.660.

ferent incident angles. For the the low-frequency regions
(depicted in Fig. 5) the sharp dips are at ω/Ω = 0.572 for
the incident angle θ = 45◦ (dashed line), and ω/Ω = 1.648
for θ = 10◦ (full line).
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Fig. 4. Oblique-incidence acoustic phonon transmission spec-
tra for the seventh generation Fibonacci phononic structure in
the hexagonal symmetry: (a) θ = 10◦ (full line); (b) θ = 45◦

(dotted line).

Fig. 5. Same as in Figure 4, but for the cubic symmetry.

For a better insight of the transmission spectra depen-
dence on the incident angle, we have shown in Figure 6 the
angular dependence of the phonon transmission spectra
for the seventh generation Fibonacci phononic structure
as a function of sin2(θ), for a fixed value of the dimen-
sionless reduced frequency ω/Ω = 1.0, considering both
symmetries: the hexagonal symmetry (full line), and the
cubic one (dotted line). This angular dependence of the
phonon transmission at a fixed frequency provides com-
plementary information on the resonant characteristics
of phonons in the quasiperiodic multilayer system. The
hexagonal symmetry (full line) presents a smooth profile
for the transmission spectra, with dips (forbidden bands)
at ω/Ω = 0.335 and 0.980. Comparing with the hexagonal
symmetry case, the cubic one (dotted line) presents several
sharp enhancements in transmission in the dip regions, in-
dicating the existence of resonances. Both symmetries are
very sensitive to the choice of the incident angle, with in-
teresting different transmission behaviors. The strong de-
pendence of the phonon transmission spectra on the angle
of incidence is due to the presence of the intermode Bragg

Fig. 6. The transmission spectra for the seventh generation
Fibonacci phononic structure, as a function of sin2(θ), for a
fixed value of the dimensionless reduced frequency ω/Ω = 1.0:
hexagonal symmetry (full line); cubic symmetry (dotted line).

reflection, in addition to the ordinary intramode Bragg re-
flection presented also in the normal incidence case [23].
Besides, the intermode Bragg reflection yields a frequency
gap of the spectrum inside the folded Brillouin zone of
the multilayer structure, breaking the self-similar pattern
presented in the normal incidence case. Furthermore, the
opacity (or transparency) of the multilayer structure can
be monitored using appropriated angle of incidence, and
we believe that the information found here could help ex-
perimental works on this subject.

5 Concluding remarks

In summary, we have described the transmission spec-
tra for acoustic phonons propagating in periodic and
quasiperiodic (Fibonacci type) semiconductor phononic
crystals using a theoretical model beyond the elastic con-
tinuum approach. We have considered stacking of wurtzite
(hexagonal) and zinc blende (cubic) semiconductor struc-
tures of GaN and AlN. These promising results open addi-
tional prospects for phononic devices exploiting phononic
band-gap properties suggesting, for instance, the potential
of designing the phonon filtering action by combining gen-
erations of the Fibonacci quasiperiodic structures. Quite
surprisingly we found that the phononic band-gap are in-
deed very sensitive to the choice of the incident angle, with
interesting different transmission behaviors. The opacity
(or transparency) of the structure can be monitored us-
ing appropriated angle of incidence, and we believe that
the information described here is encouraging for possible
experimental works on this subject.

The most important experimental technique used to
probe these phonon modes is the Brillouin light scattering,
and indeed it was previously been successfully applied for
high-quality free-standing GaN substrate [24] as well as
GaN thin film on sapphire substrate [25].
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